Elevation of cyclic AMP activates an actin-dependent contraction in teleost retinal rods.
نویسندگان
چکیده
منابع مشابه
Elevation of cyclic AMP activates an actin-dependent contraction in teleost retinal rods
Agents which elevate cyclic AMP (cAMP) cause teleost retinal rods to contract. We have characterized this cAMP effect and have evaluated the role of the cytoskeleton in cyclic nucleotide-induced contraction, using actin and microtubule inhibitors. The necklike myoid region of the rod contracts in the dark and elongates in the light. If long, light-adapted rods are cultured with cAMP analogs and...
متن کاملActin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly
Teleost retinal rods elongate when exposed to light. Elongation is mediated by a narrow necklike region called the myoid. In the cichlid Sarotherodon mossambicus, the rod inner segment (composed of the myoid with adjacent ellipsoid) increases in length from 12 micrometers in the dark to 41 micrometers in the light. Long light-adapted myoids contain longitudinally oriented microtubules and bundl...
متن کاملRegulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate
We have been using lysed cell models of teleost retinal cones to examine the mechanism of contraction in nonmuscle cells. We have previously reported that dark-adapted retinas can be lysed with the detergent Brij-58 to obtain cone motile models that undergo Ca++- and adenosine triphosphate (ATP)-dependent reactivated contraction. In this report we further dissect the roles of ATP and Ca++ in ac...
متن کاملReactivation of contraction in detergent-lysed teleost retinal cones
Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark-adapted) to 6 micrometers in fully light-adapted state. When dark-adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We repor...
متن کاملDynamics of Cyclic GMP Synthesis in Retinal Rods
In retinal rods, Ca(2+) exerts negative feedback control on cGMP synthesis by guanylate cyclase (GC). This feedback loop was disrupted in mouse rods lacking guanylate cyclase activating proteins GCAP1 and GCAP2 (GCAPs(-/-)). Comparison of the behavior of wild-type and GCAPs(-/-) rods allowed us to investigate the role of the feedback loop in normal rod function. We have found that regulation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 1982
ISSN: 0021-9525,1540-8140
DOI: 10.1083/jcb.95.2.445